properties of an identified locust motion-sensitive interneuron.

Dept. Biology, University of Saskatchewan,

 Saskatoon, SK, S7N 5E2, Canada
Introduction

The visual environment of flying animals is made up of complex
combinations of translating, receding, and looming visual stimuli. The locust visual system is capable of encoding these stimuli using a
tractable, robust system. The Descending Contralateral Movement tractable, robust system. The Descending Contralateral Movement
Detector (DCMD) is an important interneuron in the locust visual system that is involved in producing escape behaviours ${ }^{1}$).
Characteristic responses of the DCMD to simple object motion are
well described, demonstrating the utility of this neuron as a model for well described, demonstrating the utility of this neuron as a model for
coding visual motion. While DCMD responds strongly to looming coding visual motion. While DCMD responds strongly to looming
visual stimuli', data from recent studies that manipulated object visual stimuli ${ }^{2}$, data from recent sudies tha
velocity y^{3}, shape ${ }^{4}$, and trajectory ${ }^{5}$ lead us to hypothesize that this system can encode more complex aspects of the visual environmen
To test this hypothesis, we recorded DCMD activity from tethered locusts presented with computer generated discs that followed looming, tra
velocities

1 Experimental setup and stimulus paradigm

A) Experimental set up. Silver hook electrodes were used to record activity
from the efft connective of rigidly tethered locusts mounted within a hemispherical domene with the right eye aligned to the the center of of the dome.
Stimuli were projected on to the dome by an LCD projector during Stimuli were projected on to the dome by an LCD projector during
recording of neuronal data. B) Overall stimulus paradigm. Black, 7 -ct recorrang of neuronal data. B) Overal stimulus paradigm. Black, 7 -cm
diameter computer-generated discs followed 5 unique trajectories at 5
different velocities. Discs transitioned beween different velocities. Discs transitioned between translating and loomis
3 different angles in the azimuthal plane. Looming objects can be 3 different angles in the azimuthal plane L Looming objects san be
characterized by the $I \||v|$ value, where I is the half size and $||\mid$ is the absolute constant velocity during approach. Thoough translating object
did not approach, for consistency in data presentation we used $l v$ val did not approach, for consistency in data presentation we used $\eta V|v|$ values
that matched those of looming discs. To produce different $\langle\nu|$ values, we varied the velocity between approaches, tlous a smaller $\Lambda V \mid$ represents a greater approach velocity.

2 Object trajectory affects firing rate modulation

DCMD responses to three different trajectories ($\mathrm{A}, \Pi \nu \mid=30 \mathrm{~ms}$). Raw neuronal recordings (B) from one

3 object velocity affects firing rate modulation

Response profiles (time histograms) for five $/\langle v|$ values and three rajectories showing the average DCMD response ($\mathrm{n}=20$ locusts). The time scale for translating stimuli is increased to better visualize the data. Green
bars indicate the time at which the object crossed the middline of the locust's eye $\left(90^{\circ}\right)$. Red bars indicate
 amplitude peaks in response to translating stimuli increased in width with increasing $\ V \mid$ (decreasing
velocity). For looming stimuli, higher $\langle\downarrow|$ values produced lower amplitude, earlier peak firing rates. For all

4 Transition at 45° azimuth

Response profiles for five different $\Lambda|v|$ values showing the average DCMD response ($\mathrm{n}=20$ Iocusts) to visual stimulit transitioning between translation and looming at 45° azimuth. Transitions at 45° evoked distinct valleys
only for lower $\Lambda|v|$ values (10 and 20). For $\Lambda \nu v$ values of 30 to 50 , the esponse had decreased in a way similar to responses to pure translational response
motion.

5 Transition at 135° azimuth

Response profiles for five different $t V \mid$ values showing the average DCMD
response ($\mathrm{n}=20$ O locusts) to visual stimuli transitioning between transtion response (n= 20 locusts) to visual stimuli transitioning between translation
and looming at 135° azimuth. Transitions at 135° evoked distinct valleys
 very little modulation of the firing rate, regardless of a transition to

6 Parameters of the DCMD

Parameters of the DCMD response to visual stimuli transitioning from transla
looming at 45° (green), 90° (red), or 135° (bue). A: The amplitude of the TOC associated peak in firing rated decreased as the $\$ IVl Thalue increased. B: The primar peak occurred earlier with increased $l|v|$ values. This suggests that the earlier
reansition does not affect the final response to looming. .: The timing of the transition does not affect the final response to oooming. © The timing of the valley
relative to the TOT shows different responses with different approach angles. When approaching at 90° after translating, an increase in $I V$ increased the time between
the TOT and the valley. Due to the difficulty in identifying a valley for higher $\langle\nu|$ he TOT and the valley. Due to the difficulty in identifying a valley for higher $\backslash V \mid / V^{\circ}$
values, only the lowest two are given for trajectories that transition at 45° and 135°

Summary

- DCMD produced low amplitude, broad peaks in firing rate in response to translational motion.
- Transitioning from translation to looming does not affect the relationship between the looming response and the $I / / v \mid$ value.
- Firing rate modulation is affected by combinations of velocity and trajectory
- Future experiments will investigate how ensembles of motion-sensitive neurons respond to complex motion.

References

Acknowledgements

Funding provided by the Natural Sciences and Engineering Research Council of
Canadada the Canada Foundation for

